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Assuming the turbulence length scale to be unaffected by streamline curvature, 
a turbulence velocity scale for curved shear flows is derived from the Reynolds- 
stress equations. Closure of the equations is obtained by using the scheme of 
Mellor & Herring (1973), and the Reynolds-stress equations are simplified by 
invoking the two-dimensional boundary-layer approximations and assuming 
that production of turbulent energy balances viscous dissipation. The resulting 
formula for the velocity scale has one free parameter, but this can be determined 
from data for non-rotating unstratified plane flows. Consequently there is no free 
constant in the derived expression. A single value of the constant is found to give 
good agreement between calculated and measured values of the velocity scale 
for a wide variety of curved shear flows. 

The result is also applied to test the validity and extent of the analogy between 
the effects of buoyancy and streamline curvature. This is done by comparing the 
present result with that obtained by Mellor (1973). Excellent agreement is 
obtainedfor therange - 0.21 < Ri, < 0.21. Therefore the present result provides 
direct evidence in support of the use of a Monin-Oboukhov (1 954) formula for 
curved shear flows as proposed by Bradshaw (1969). 

1. Introduction 
The importance of streamline curvature in a turbulent flow has been recognized 

by many investigators and various experimental efforts have been made to study 
its effects. For example, the effects of surface curvature on two-dimensional 
turbulent flows were investigated by Wattendorf (1935), Eskinazi & Yeh (1956), 
Giles, Nays & Sawyer (1966), Patel (1969), Ellis & Joubert (1974) and So & 
Mellor (1973, 1975). These studies show that curvature of the mean flow gives 
rise to a substantial change in the turbulent flow structure and an appreciable 
change in the measured mean velocity and wall shear stress. The most striking 
effect of curvature observed by So & Mellor (1973) in a turbulent boundary layer 
on a convex surface was that the shear stress vanishes in a region where the 
velocity gradient is still substantial. This seems to support the idea of a critical 
Richardson number beyond which turbulence cannot exist in convex curved 
shear flows. 

The Coriolis effects on two-dimensional turbulent flows are equally striking 
and have been studied by Moore (1967), Halleen & Johnston (1967), Lezius & 
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Johnston (1971) and Johnston (1971). The latter found that for fully developed 
turbulent flows in a rotating channel increased rotation delays the transition to 
turbulence on the stabilized side of the channel. This finding is significant for the 
study of centrifugal compressors because according to Dean (1968), Coriolis 
effects contribute to the stabilization of suction surface layers and destablization 
of pressure surface layers on the blades. 

Various attempts have been made to predict the observed effects of streamline 
curvature on shear-flow development. The approaches taken are quite different; 
however, the most widely accepted approach is based on Prandtl’s mixing-length 
theory. Prandtl (1929) was the first researcher to extend the analogy between 
buoyancy and streamline-curvature effects to turbulent flow and he proposed 
accounting for either effect by multiplying the mixing length by a factor F which 
is a function of a dimensionless curvature or buoyancy parameter. He then used 
mixing-length arguments to estimate the behaviour of F and obtained 

where p = t for curved flows. With the availability of more reliable curved-flow 
data (Wattendorf 1935; Schmidbauer 1936; Eskinazi & Yeh 1956)) Prandtl’s 
estimate of the curvature effects was found to be one order of magnitude lower 
than the observed effects, and a much larger p has to be used in order to account 
for the observed curvature effects. This introduces a certain arbitrariness into 
predictions for curved boundary layers. 

Following Prandtl’s line of reasoning, Bradshaw (1969) also drew an analogy 
between the effects of buoyancy and streamline curvature and argued heuristi- 
cally that the non-conservative centrifugal forces exert their influence on the 
mixing length through the gradient Richardson number of the flow in question. 
He then used the analogy to apply meteorological data to curved shear flows and 
found that the use of a Monin-Oboukhov formula with a free constant consider- 
ably improves the agreement between prediction and experiment for boundary 
layers on curved surfaces. Therefore the F factor becomes 

F = 1 -/3RiB, 

where Ri, is the gradient Richardson number as defined by Bradshaw [given in 
equation (19a)l .  However, Bradshaw found that he had to use a smaller /3 to 
account for flows on concave surfaces and for the effects of spanwise rotation. 
This approach was also adopted by such investigators as Rastogi & Whitelaw 
(1971) and Lezius & Johnston (1971), who found it necessary to change the value 
of ~3 in order to  obtain good agreement with data for curved jets and rotating 
channels. Therefore the arbitrariness inherent in Prandtl’s original approach has 
not been eliminated by Bradshaw. 

In  a recent review of streamline-curvature effects, Bradshaw (1973) again 
argued in favour of this simple approach and obtained values of p that range from 
2 to 7 depending on the type of shear flow considered. Bradshaw’s approach is 
quite adequate for curved shear flows with very small values of 6/R; however, it  
fails badly to predict the data of So & Mellor (1973), where SIR  - 0.1. This indi- 
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cates that a linear correction to the mixing length or eddy viscosity may not be 
adequate for curved shear flows with moderate to high values of 8/R. Besides, the 
F-factor correction was obtained from heuristic arguments and cannot be 
justified analytically. 

The above approach is not very satisfactory because it involves more 
empiricism than is necessary and is also limited to flows with very small stream- 
line curvature. To remedy the situation, So & Mellor (1972) proposed an eddy- 
viscosity function to account for effects of surface curvature. The eddy-viscosity 
function was obtained by closing the turbulent energy equations by suitably 
modelling the pressure-velocity correlation terms, the triple velocity correlation 
term and the viscous dissipation term and by invoking the boundary-layer 
approximations for a two-dimensional mean flow. There is one free parameter in 
the final expression; however, it can be determined from data for unstratified 
plane flows. As a result, there is no free constant in the eddy-viscosity function. 
So & Mellor (1972) then applied the eddy-viscosity function to calculate the 
boundary-layer development on curved surfaces and obtained good agreement 
with their measured results. In  addition, the point beyond which turbulent shear 
stress could not be maintained was accurately predicted. 

Later, Mellor (1973) used the same approach to simplify the one-point turbu- 
lent moment equations for velocity, temperature and pressure for a stratified 
planetary boundary layer and obtained good agreement with the Kansas data 
reported by Businger et al. (1971). 

Here, the approach of So & Mellor (1972) will be extended to curved shear flows. 
The result will be used to test the validity and extent of the analogy between 
buoyancy and streamline-curvature effects by comparing it with the expression 
obtained by Mellor (1 973). It will also be shown that the eddy-viscosity function 
can be recast in the form of an F-factor correction for the mixing length and that 
for small Richardson number the Monin-Oboukhov formula is recovered. There- 
fore, for the first time, evidence is obtained to support the use of the Monin- 
Oboukhov formula to account for the effects of curvature and rotation in a 
turbulent flow as suggested earlier by Bradshaw (1969). 

2. The Reynolds-stress equations 
In  the analysis of So & Mellor (1 972) it  is assumed that kc? < 1 (where k ( x )  is the 

surface curvature, x is measured along the surface and 6 is the boundary-layer 
thickness). This leads to a set of equations in which the exact metric influence of 
curvature is neglected. So (1975) showed that the neglect of the metric coefficient 
in the mean flow equations leads to extra terms in the von K&rmh momentum 
integral and therefore introduces unnecessary errors into the solution of these 
equations. Also, the results using k8 < 1 are not valid in regions of small curva- 
ture, which are commonly found near the leading edge of turbo-machinery 
blades. In the following analysis, k8 = O( 1)  will be considered so that the results 
may also be applied to the leading edge except in regions around the stagnation 
point, where the boundary-layer approximations fail. 

Consider a flow rotating about a spanwise axis (i.e. the axis of rotation is 
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normal to the plane of the mean rate of strain). In this case the ' centrifugal force' 
due to rotation can be absorbed into the mean pressure-gradient term if the flow 
is analysed with respect to a co-ordinate system fixed to the surface. The 
Reynolds-stress equations in tensor form are 

where xi is the ith component of the Eulerian Cartesian co-ordinate, Qi, ui and 
U, are the ith components of the rotation vector and the fluctuating and mean 
velocities respectively, p = p'lp is the fluctuating pressure, p is the fluid density, 
(r,,} is the viscous stress tensor and {eijk) is the alternating tensor. 

Equations (1) can be written in terms of the single-point double velocity cor- 
relations by appropriately modelling the terms p-lax,:,, pu ,  and u i u j u k .  

The model terms proposed by Rotta (1951) and adopted by Mellor & Herring 
(1973) are 

- 

where I,, I, and 1, are empirical length scales and are as yet undefined. The viscous 
terms in (1)  can be written as 

and following Kolmogorov's ( 1941) hypothesis of local small-scale isotropy, the 
last term in (3) can be written as 

where q = (=)* and A is the dissipation length scale. 

ized tensor form are 
Equations (2)-(4) are substituted into (1). The resultant equations in general- 

a u u  - - 
A+ U k ( ~ . ) , , ,  = - U k u i U , , , - U ~ U i q , , ;  

- at 

+ 2{€,l, Q"umu, + Ej lm Qiu"ui) + [&qZ,(q2, ill  ,5 

+ [Ba/2(q2,  ,)I ,i + gk"q13('Uiu, , 1 +  Uj"i,i + UlUi , j ) l  ,, 

- Q (914 ) [wj - 4gi.j q21 + vgk"(uiuj) , ,z - ggij q 3 p  7 

--- 

( 5 ) 

where 
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FIGURE 1. Curvilinear co-ordinate system. 

A curvilinear orthogonal co-ordinate system fixed to the surface is considered 
and the rotation about the x2 axis is assumed to have components (0, Q, 0) .  If 
{x*] = (x, y, z )  and (ad) = (u, w, w), then it can be shown that (figure 1) 

Since the instantaneous Coriolis force is always normal to the instantaneous 
velocity vector, Coriolis forces are not associated with direct energy production. 
However, the effects of rotation on production will be felt implicitly through the 
effects of L2 on the Reynolds stresses and mean shear. This can be seen by writing 
(5) in component form. 

The component equations can be simplified by assuming that the flow is 
statistically steady and that production of turbulent energy balances viscous 
dissipation except in a very thin layer next to the surface and invoking the two- 
dimensional boundary-layer approximations. A model in which production 
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balances dissipation was used by Bradshaw (1969)  and is also a good approxima- 
tion in the inner layer of the atmospheric boundary layer (Wyngaard & Cot6 
1971) .  Without loss of generality, the eo-ordinate system can be oriented such 
that vW = 0. If 2QU is taken to be of the same order as kU2/(  1 + k z ) ,  then it 
follows from the boundary-layer approximations and the component equations 
for .uV and VW that UV = 0.7 The resulting equations for u2, v2, wz and t i  are 

- - -  

7 
+ 4 Q -  = 0, 

2kU 7 

l + k z p  p 

l q  - qz 2q3 -- vz-- + - - = o  
3 4 ( 3 )  3R ’ 

where r / p  has been substituted for - UW. 

3. The turbulence velocity scale 
The simplified Reynolds-stress equations (8)-( 11) are algebraic in r /p  and can 

easily be solved in terms of k, Q and the mean flow quantities. The solution is 

where 

A different form of ( 1 2 )  with Q = 0 and 1 + kz 2: 1 was obtained by So & Mellor 

In  the absence of curvature and rotation, (12) reduces to 
( 1  972) .  

C./rO)o = 1; ( a W 4 ; 7  (13) 

where the subscripts zero denote properties of a corresponding non-rotating plane 
flow. It can be seen that (13) is the familiar Prandtl expression for the turbulent 
shear stress and 2, has the meaning of a mixing length. On the other hand, if an 

For three-dimensional flows or for flows in which the plane of surface curvature, the 
plane of rotation and the plane of the mean shear do not coincide, % and are not zero. 
A discussion of three-dimensional effects is given by Bradshaw (1973). Here, only two- 
dimensional flows or flows in which all three planes coincide are considered. 
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effective viscosity v,, is defined as v,, = qolo, then (13 )  gives the turbulence 
velocity scale as 

and I, can be interpreted as the turbulence length scale. 
Since (12) is derived from the Reynolds-stress transport equations, it  is reason- 

able to assume that the streamline-curvature effects thus deduced affect only the 
turbulence velocity scale and not the length scale. Therefore an effective viscosity 
v, = ql, can be defined for curved shear flows and the shear stress can then be 

qo = lO(aulazt0 (14) 

written as 

Note that (15 )  is chosen such that it has the same form as the corresponding 
equation for laminar shear flows. 

If the gradient Richardson number Ri is defined as 

typical body force 
typical inertia force' 

Ri = 

then it can easily be shown that for the curved shear flow in question 

Ri = S( 1 + s), (16a) 

where 

With the help of (14)-(16) and ve = ql,, the velocity-scale formula for curved 
shear flow can be deduced as 

where 

For non-rotating curved flows, S = S, and Ri = Ri, = S,(l + S,). However, 
from heuristic arguments, Bradshaw ( 1  969) defined the gradient Richardson 
number as 

Ri, = 25,(1 +AS',), 

where 

The difference between Ri, and Ri, is negligible when S, 4 I; however, it 
becomes significant when S, N I. Therefore it is important t o  retain the curva- 
ture term as well as the gradient term in the definition of Ri, especially in cases 
where k8 = O( 1). 

For rotating plane flows, (16a) gives Ri = RiR = sR(1 +kJR), where SR is 
given by 

and the velocity-scale formula is again given by (17) but with 8, = 0. 
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Alternatively, (17) can be written in terms of the flux Richardson number Rif, 
which can be defined as 

w-component energy production due t o  body force 
u-component energy production 

Ri, = - 

From (8), (10) and (16b), Rif can be written as 

Rif = S/(i + S )  (21) 

and with the help of (16a) and ( Z i ) ,  (17) becomes 

q [ l -~ , !?Rif ( l -Rif ) -z ]~  8Ulax 
- =  
40 1 +is, (au/ax)O' 

Therefore, either (17) or (22) can be used to estimate the velocity scale for curved 
shear flows depending on which is more convenient. 

4. Determination of /3 
Equations (17) and (22) are completely defined except for the parameter p, 

which is defined in (12 b).  So & Mellor (1972) have shown that lJA can be easily 
determined from (8)-( 11) by considering the wall-law region of non-rotating 
flows on plane surfaces. From the data of Laufer (1954) and Klebanoff (1955), 
So & Mellor (1972) determined q/uT N- 2-4 and therefore obtained a value of 0.04 
for Illhand N 4 for p. On the other hand, if qIuT is taken to be 2.3 [which amounts 
to an error of - 4 % in the interpolation of the data of Laufer (1954) and 
Klebanoff (1955)], the corresponding values for ll/A and p are 0.053f. and - 6 
respectively. Previously, So & Mellor (1972) had found that p = 4 gives a better 
prediction of their curved boundary-layer flows, but as will be seen later, /3 = 6 
gives a better overall prediction of all kinds of curved-flow data, rotating-channel 
data and meteorological data. 

5. Comparison with measurements 
Experimental data on two-dimensional rotating curved flows are practically 

non-existent. The known exceptions are the rotating-cylinder results of Parr 
(1963); however, he reported no measured shear-stress profiles. In  view of this, 
(1 7) will be compared with measurements obtained from non-rotating curved 
flows and rotating plane flows. The data chosen are those obtained by Wattendorf 
(1935), Schubauer & Klebanoff (1951), So & Mellor (1973) and Halleen & 
Johnston (1967). 

The result given in (12) can be written alternatively in terms of a mixing 
length 1 such that 

(23 a )  

and lz/1E = (1 - @ Ri)%. (23 b )  

- = p  --- 
P (E 1ZJ2, 
7 

t A value of 0.052 was used by Mellor (1973), who found good agreement with the 
atmospheric data of Businger ek al. (1971). 
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FIGURE 2.  Comparison of calculated and measured mixing length in a fully developed curved 
channel flow. 0 ,  Wattendorf’s (1935) data; -, present calculation. 

Then (17) and (23 b)  together give 

In view of the fact that most data are reported in the form l / l o ,  comparison of 
measured data will be made with (24) instead of (17). Also, it should be noted 
that Ri, and Ri, are calculated from graphical differentiation of measured mean 
velocity profiles; therefore, estimates of uncertainty of f 15 % are representative 
of the overall accuracy of the results shown. 

In  evaluating S, from Wattendorf’s (1935) data, the value of aU/az near the 
wall is calculated using the method suggested by Wattendorf. In the central core 
of the channel, aU/az is calculated using graphical differentiation. The I, used are 
those calculated by Wattendorf in the straight section of his channel. l / b  is 
plotted us. x/b in figure 2, where b is the channel width. It can be seen that (24) 
with /? = 6 and Ri = Ri, correlates well with the data near the wall. Beyond 
z/b = 0.1, &pRi, > 1, which is a consequence of the large Ri, in this region 
(figure 3). The large magnitude of Ri, arises entirely from its normalization by 
aU/az - kU/( 1 + kz) and does not reflect the magnitude of the curvature effects. 
A similar problem exists for rotating flow; however, Lezius & Johnston (1971) 
suggested a redefinition of Ri, so that a smooth distribution of aU/& (with 
aU/az = 0 at r /p  = 0 )  is obtained. Adopting this approach for curved flows, Ri, is 
redefined as shown by the broken line in figure 3 and also the results obtained for 
l /b  for 0-1 < x/b < 0.2 and 0.8 < z/b < 0.9 are plotted in figure 2. Again good 
agreement with Wattendorf’s (1934) data is obtained. 

The measured data of So & Mellor (1973) at  x = 71in. are chosen for com- 
parison. The mixing length 1 is calculated from the measured --uW and mean 
velocity profiles, while I ,  is calculated from the corresponding measurements 
obtained at x = 24in., at  which there was a flat-plate equilibrium boundary 
layer. The results are shown in figure 4 together with two curves (p = 4 and 6 )  
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FIGURE 3. Distribution of gradient Richardson number Ri, across the channel in a fully 

developed curved-channel flow. ----, redefinition of Ri, for purpose of calculation. 

calculated from (24). Previously, So & Mellor (1972) had shown that /3 = 4 gives 
a better prediction of the boundary-layer development on convex surfaces; how- 
ever the present results show that the measured data actually correlate better 
with the p = 6 curve. The critical Richardson number beyond which turbulence 
cannot exist determined from the data at  x = 71 in. and y/6 N 0-4 is 0.35.t This 
compares well with the value of 0.33 calculated from (24) with ,8 = 6. 

The other well-authenticated test case with a prolonged region of surface 
curvature is the separated-flow experiment of Schubauer & Klebanoff (1951). 
The aerofoil used has a radius of curvature of 31 f t  downstream of the pressure 
minimum 1% T 18ft). where R N 3in. The measurements at  x = 23.5 and 25ft _._______ ~ . ~ - ~ ~  ,.. - ~~ -.,, ~ ~ . ~ .  . __ ~~~~ ~~ ~ ~. . ~ ~ ~ .  ~~ 

are chosen for comparison while I ,  is calculated from the measurements at  
x = 17.5ft, at which there was a flat-plate boundary layer. The results are shown 
in figure 5. It can be seen that the effect of surface curvature on the velocity scale 
is small; however, it  is significant enough to have an appreciable effect on the 
boundary-layer development (Bradshaw 1969). In spite of the large scatter 
( f 20 %) seen for Ri, < 0.02, it can be said that the value p = 6 determined 
from dat,a for unstratified plane flows is independent of the effects of pressure 
a r d  ient . - 

The data of Halleen & Johnston (1967) have previously been analysed by 

t So & Mellor ( 1973) calculated R ~ B  and obtained a value of 0.30 for the critical Richardson 
number. The difference is N 15 yo and tends to illustrate the importance of defining the 
Richardson number as Ri, rather than as R ~ B .  
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FIGURE 4. Comparison of calculated and measured mixing-length ratio in a boundary layer 
on a convex surface. 0,  So & Mellor's (1973) data. Present calculations: -, p = 6; 
----, p = 4. 
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FIGURE 5. Comparison of calculated and measured mixing-length ratio in a curved boundary 
layer near separation. Schubauer & Klebanoff's (1951) data: m, x = 23.5ft; 0 ,  x = 25ft. 
---, present calculation. 
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R ~ R  

FIGURE 6 

RiR 

FIGURE 7 

FIGURE 6. Comparison of calculated and measured mixing-length ratio on the trailing side 
of a fully developed rotating channel flow. Lezius & Johnston's (197 1) data: v, Ro = 0.069, 
Re = 1 . 1 4 ~  lo4; x ,  Ro = 0.027; ., Ro = 0.042; 0 ,  Ro = 0.056; 0, Ro = 0.068; A, 
Ro = 0.081, Re = 3-54 x lo4. --, present calculation. Ro = 2Q231Um, Re = 2Uml)lv, where 
U," is the average mean velocity and D is the channel half-width. 

FIGURE 7. Comparison of calculated and measured mixing-length ratio on the leading side 
of a fully developed rotating channel flow. Lezius &Johnston's (1971) data: V, Ro = 0.069; 
0, Ro = 0.117, Re = 1 . 1 4 ~  lo4; x , Ro = 0.027; ., Ro = 0.042; 0 ,  Ro = 0.056; 0, 
Ro = 0.068; A, Ro = 0.081, Re = 3.54 x lo4. - , present calculation. See figure 6 for 
definition of Ro and Re. 

Lezius & Johnston (1971), therefore the present calculations using (24) with 
= 6 and Ri = Ri, are compared with the data reported in Lezius & Johnston 

(1971). The results are given in figures 6 and 7 and show that (24) correlates well 
with the measured data on the stabilized side of the channel but gives a value 
that is consistently too low on the unstable side. As shown by Lezius & Johnston 
(1 971), this would lead to  an underprediction of the mean velocity, but would not 
have an appreciable effect on the wall shear stress. 

6. Examination of the curvaturelbuoyancy analogy 
There is a close analogy between streamline curvature and buoyancy in laminar 

flows (Gortler 1959); however, the analogy is not quite so close in turbulent flows. 
This is evident from the early work of Prandtl (1929) and the experimental 
measurements of Wattendorf (1935), Schmidbauer (1936) and Eskinazi & Yeh 
(1956). Further evidence is also provided by the experiment of Johnson (1959), 
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who found the correlation coefficient of temperature and velocity fluctuations to 
be approximately 0.7 in a shear flow over a heated flat plate. Nevertheless, 
Bradshaw (1969, 1973) made use of the idea to apply meteorological data to 
curved turbulent shear flows and found good agreement between calculated and 
measured boundary-layer development on curved surfaces with a radius of 
curvature large compared with the boundary-layer thickness. 

The assumption that the curvaturelbuoyancy analogy is valid is implicit in the 
work of Prandtl and Bradshaw; however, the validity and extent of this approxi- 
mation have not been carefully examined. Recently, Mellor (1973) used a model 
in which production balances dissipation to analyse a stratified boundary-layer 
flow and obtained an analytic expression for the shear stress --u.W. In  view of 
this, an attempt will be made to assess the validity and extent of the curvature/ 
buoyancy analogy by comparing the present result for - u.W with that obtained 
by Mellor (1973). 

Following Monin & Oboukhov (1954), the non-dimensional quantity q5zw is 
defined by 

where K is the von K&rm&n constant and u, = (r /p)* is the friction velocity. Now, 
$M can be interpreted as the ratio of two mixing lengths, i.e. 

$M = l o / l ,  (25 b )  

where 1, = KZ is the mixing length of the atmospheric surface layer in unstratified 
air and 1 is the corresponding value in a stratified medium. With the help of (16 a ) ,  
(21) and (23), (12) can be written as 

(26) 

If a formal analogy is drawn between streamline curvature and buoyancy, (25b)  
and (26) together give 

where 

and Ri, is now the flux Richardson number for stratified flows, which is defined 
as the ratio of negative buoyant production to shear production, i.e. 

l/Zo = [ 1 - i p  Ri,-/( 1 - Rif)']%. 

$M = 10/1 = ski, 
SM = [l - +p RiJ( 1 - Rif)2]3 

(27 a )  
(27 b )  

In  (28), 8 is the potential temperature, -a is the thermometric heat flux, 
a = - (ap/aT),/p is the coefficient of thermal expansion, T is the mean tempera- 
ture and g is the acceleration due to gravity. 

The result obtained by Mellor (1973) for --uW in a stratified planetary 
boundary layer can be conveniently written as 

6 M -  -x"-i, M (29a) 

(1 - 34386r) (I  - 2.70017) t Ri , , r=- (29 b ,  c )  i - 3-006r 1 1 - Ri,' where f l M  = (1 - Rif)* 

F L M  70 4 
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The flux Richardson number Ri, is again defined by (28). In  deducing (29) from 
Mellor’s results, use is made of ( 2 5 ~ ) )  it is assumed that I,, = KZ and - UW = u: in 
the constant-flux layer and the constants A,, A,, B,, B, and C are taken to be 
0-78, 0.79, 15.0, 8.0 and 0.056 respectively as given by Mellor (1973). Equation 
(29b) with the constants restored is also given by Mellor & Yamada (1974). If 
5 = z/L, where L = us/Kag( - we) is the Monin-Oboukhov length scale, then it 
can easily be shown that 6 = $iMRif. This result presented in the form $,(() has 
been compared with the constant-flux data of Businger et al. (1971) by Mellor 
(1973) and good agreement was obtained. 

The validity and extent of the curvature/buoyancy analogy can now be 
assessed by comparing (27) with (29). Taking ,8 = 6, (27) gives a critical flux 
Richardson number Ri,,, = 0.209 beyond which turbulence cannot exist. Simi- 
larly, (29) gives Ri,,, = 0.213. Therefore the analogy can be considered valid as 
far as estimating the limit of turbulent energy production in a stably stratified 
boundary layer is concerned. The accuracy of this estimate compared with 
measured values will be discussed later. 

The behaviour of $, and $M in the limits Ri, --f 0 and Ri, --f - w is given by 

$fif N 1 i- 2.25 Ri,, 6, N 1 f 2.785 Ri, as Ri, -+ 0, (30% b )  

$, N 1, $, N 0-333( - Rif)A as Ri, +-a, (31 a, b )  

which clearly shows that the curvature/buoyancy analogy is not valid for large 
values of - Ri,. A plot of $2 and 6 2  ‘us. Ri, is given in figure 8. It can be seen 
that for small positive values of Ri, the functions $2 and $ ~ l  are identical. 
Therefore the analogy is most valid for stable flows and the range of Ri, in which 
it can be applied is - 0.21 6 Ri, i 0.21. 

If an effective viscosity K ,  and an effective conductivity K H  are defined for 
a stratified shear flow such that 

rlp = - 1~ = K ,  aulaz, 
H = - WB = K H  aolaz, 

(32a) 

(32b) 

where 0 is the mean potential temperature, and if a non-dimensional quantity 

KZU, ao 
d H = r z  

- #H = Kill = pr,, 

is introduced, then it can be seen from (25a),  (32) and (33) that 

4n-I K H  

(33) 

(34) 

where Pr, is the turbulent Prandtl number. Combining (27) and (34) the following 
result is obtained: 

$H = Pr, 83. (35) 

Mellor’s result for a stratified flow can be written as 

4 -$? 7 4 ,  
H -  M ~ H  
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Ri, 

FIGURE 8. Comparison of the curvature/buoyancy analogy with the analytic results of 
Mellor (1973). -, $&'; --, $&'; -.- , $G1/1.351. Note the change of scalein Ri,. 

Again, the behaviour of J H  as Ri, -+ 0 and Ri, -+ - co is given by 

0-740( % + 3.025 Ri,) as Ri, -+ 0, (37 a )  

0.230( - Rif)-* as Ri, --f - a. ( 3 7 b )  
6 1 Z  { 

If Prt is chosen to be 0.74, it can be seen that the curvature/buoyancy analogy 
can also be applied to estimate the heat flux in a stratified shear layer (figure 8) 
and the range of Ri, in which the analogy is valid is again seen to be 

-0.21 < Ri, < 0.21. 

For Ri, < 0, the agreement between C$M and $M and between C$H and $H is 
rather poor except in the range Ri, > - 0.20. On the other hand, the agreement 
between $M and #H and the measurements of Businger et al. (1971) is only 
marginal for Ri, < - 0.20. I n  view of this, the part of the range Ri, < - 0-20 in 
which the analogy is valid will be established by direct comparison of the present 
results with the measurements of Businger et al. (1971). If Ri = Ri,(l -Rif)-2 is 
substituted into (26) and an analogy is drawn between streamline curvature and 
buoyancy, then it can be shown that 
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FIGURE 9. Comparison of calculated and measured dimensionless wind shear. , data of 
Businger et al. (197 1); -, present calculation; ---, Mellor's (1973) calculation. 

where Ri is now the gradient Richardson number for stratified flows and can 
be written as 

g a o p z  
Ri = T(aU/az)2' (39) 

According to similarity theory, $lw and r$H are universal functions of z/L 
(Lumley & Panofsky 1964, p. 106), therefore Ri is also a function of z/L. For 
unstable stratification, it has been suggested by Psndolfo (1966) and Businger 
(1966) that Ri = z / L  is a good approximation for Ri, and the Kansas data 
analysed by Businger et al. (1971) essentially substantiate this conclusion. For 
stable stratification, however, no such simple relation exists between Ri and z / L .  
But for small z/L, the analysis of Businger et al. (1971) showed that Ri E 0-74(z/L). 
The simple expression Ri = z/L is therefore a good first approximation for the 
present purpose. With this substitution, (38) becomes 

(40) 

This expression is used to calculate and $H from (27 a) and (35) and the results 
are shown in figures 9 and 10. Shown also in these figures are the measurements of 
Businger et al. (1971) and the calculations of Mellor (1973) given by (29a) and 

x, = [ l  - &P(X/L)]+. 
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Frcunr: 10. Comparison of temperature variance under unstable conditions. e, data of 

Businger et al. (1971); -, present calculation; ---, Mellor’s (1973) calculation. 

(36 a), while the behaviour of $N and $M for small z/L is included as an inset in 
figure 9. The results show that, for - 2  < z/L < 0,  q5M and q5H correlate better 
with the measurements of Businger et al. (1971) than $M and $*. Since, for small 
values of S, Ri N Ri,, the curvature/buoyancy analogy can therefore be con- 
sidered to be valid in the range - 2 < Ri 6 0.21. However, more data are needed 
to provide added evidence to support this claim. 

7. Discussion 
Most previous work on the effects of surface curvature or spanwjse rotation is 

described using an F factor for the mixing length. I n  order to compare those 
results with the present one, the F factor is rewritten in the form of a correction 
factor for the turbulence velocity scale, which for small values of Ri is most 
conveniently given as 

where n and /3 are free constants. A number of different values for n and /3 have 
been used by researchers in the past. Usually, they were selected to fit best the 
experimental flow under consideration. For example, GiIes et al. (1966) chose 
n = 1 and /3 = 3 for curved wall jets while Rastogi & Whitelaw (1971) selected 
n = Q and /3 = 4.5 for curved boundary-layer flows and wall jets and Bradshaw 
(1969) used n = 1 with /3 = 4.5 and 7 in his investigation of boundary-layer flows 
on convex and concave surfaces respectively. However, for rotating-channel 
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flow, Bradshaw (1969) found it necessary to select n = 1 with p = 4 and 2 for the 
flow on the stable and unstable sides of the channel respectively, but Lezius & 
Johnston (1971) found that n = 1 with /i’ = 6 gave a best overall fit to the data 
of Halleen & Johnston (1967). I n  general, the values chosen for n a.nd p give 
a coefficient that lies in the range 4 < 2n/3 < 14. 

In  the case of curved or rotating flows, (17) can be simplified for small Ri, or 
Ri,, and the result is 

The coefficients obtained by taking p = 4 or 6 are 3.5 or 3 and 5 or 4.5 respec- 
tively. It can be seen that the latter values fall in the range 4 < 2np < 14 and 
compare most favourably with the value of 4 found by Bradshaw (1969) to give 
the best straight-line fit with available data on curved and rotating flows over the 
range - 0-5 < Ri,, Ri, < 0. Although a comparison of (17) with curved-jet data 
has not been made, the results of Giles et ul. ( 1  966) and Rastogi & Whitelaw (1 971) 
provide the most favourable evidence supporting the extension of ( 17) to curved- 
jet flows. Since both Coriolis and ‘centrifugal’ forces depend on the u component 
of velocity, one would intuitively expect the same /3 to apply to both rotating and 
curved flows. The present results show that this is indeed true. Therefore, it  can 
be seen that p = 6, determined from data for non-rotating unstratified plane 
flows, is the correct constant to use in (17) for a wide variety of curved and 
rotating flows and that /i’ is independent of the effects of body forces and pressure 
gradient. 

The results given in (42) provide, for the first time, direct evidence supporting 
the use of a Monin-Oboukhov formula to correct for the effects of surface curva- 
ture and spanwise rotation on the turbulence Iength or velocity scale. However, 
for rotating flow on curved surfaces, the Monin-Oboukhov formula has to be 
modified by the factor (1 + +X,)-l because a small Ri does not necessarily imply 
that Ri, is also small. In  order to verify this, experimental work on two-dimen- 
sional rotating flow on curved surfaces has been planned. 

The collapse of turbulence is a common phenomenon in a stably stratified 
atmosphere and its occurrence is governed by a critical Richardson number Ri,,,, 
which was originally determined by Richardson (192Q), who assumed that 
KJw = KIT and found Ri,, = 1. On the other hand, if K,, = K13 is not assumed 
but the stratified flow is considered to be statistically steady and transport of 
turbulent energy by diffusion and through advection by the mean flow is con- 
sidered negligible, then the turbulent energy equation can be written as 

1 - Ri, = dissipation. 

Therefore, the critical flux Richardson number RiJcl beyond which turbulence 
cannot exist also has an absolute upper limit of one (the turbulent dissipation of 
energy cannot change sign). Since viscous dissipation is always present in any 
real flow and serves as a turbulent energy sink, it is reasonable to expect that 
Ri, c, or Ri,, will have a value less than one. Townsend (1 958) found that, if the 
turbulent intensity is also required to satisfy the equation for the intensity of the 
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temperature fluctuations, then Ri, ,, < 8. This result is supported by the semi- 
empirical analysis of Arya (1972), who found that Ri, ,, ranges between 0-15 and 
0.25, and by the experimental evidence of Businger et al. (1971)) who reported 
that Ri,,, = 0-25. The recent analysis of Mellor (1973) gives Ri,,, = 0.213 while 
the present analysis, together with the assumption of a curvaturefbuoyancy 
analogy, gives Ri, ,, = 0.209. I n  view of this, further evidence in support of the 
validity of the curvature/buoyancy analogy in a stably stratified flow has been 
obtained. 

The critical flux Richardson number can be interpreted as corresponding to 
the total production of turbulent energy in the boundary layer becoming very 
small while dissipation continues with the result that the whole level of turbulence 
decreases. For curved flows, the simplified turbulent energy equation is 

7 au 2 -  ( ax l",";cz) = dissipation. 

Therefore vanishing production of turbulent energy implies that 

a u p z  = k:V/(i + k~). 
This condition then gives an absolute upper limit of one for Ri, cr for curved flows. 
The corresponding upper limit for Ri,, is infinity. Unlike stratified flows, there is 
no second condition for the turbulent intensity to satisfy, therefore there is no 
a priori reason to expect Ri, cr to be much less than one as in the case of a stably 
stratified atmosphere. Nevertheless, laboratory observations of flows on curved 
surfaces by So & Mellor (1973) indicate that Ri,,, = 0.215, which is in excellent 
agreement with the value Ri, ,* = 0.25 reported by Businger et al. (1971). This 
further supports the close analogy between the effects of buoyancy and stream- 
line curvature. 

From the above discussion of the critical flux Richardson number, it is clear 
that careful experimental work on curved shear flows and stratified flows is 
needed t o  determine more precisely the value of RifcT.  

8. Conclusions 
A simple formula for the variation of the turbulent velocity scale with 

Richardson number has been derived from the Reynolds-stress equations by 
assuming that production of turbulent energy balances viscous dissipation. The 
resultant formula contains one free parameter, but it can be determined from 
data for unstratified flows. Consequently, there is no free constant in the formula. 
I n  the case of non-rotating curved flow or rotating plane flow, the formula can be 
shown to reduce to the Monin-Oboukhov formula for small Richardson number. 
Therefore, this provides direct evidence supporting the application of the Monin- 
Oboukhov formula to curved shear flows as suggested by Bradshaw (1969). 

The present formula was found to be consistent with the limited data available 
on curved shear flows. However, more experimental work is needed to establish 
further the general validity of the present result. 
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By comparing the present result with that given by Mellor (1973), the 
curvaturefbuoyancy analogy was shown to  be valid in the range 

-0.21 6 Ri, 6 0.21, 

and the critical flux Richardson number beyond which turbulence cannot exist 
is in excellent agreement with that predicted by Mellor and the measurement of 
Businger et al. (1971). It was also found that good agreement between predictions 
and measurements of wind shear and temperature variance in an atmospheric 
surface layer is obtained in the range - 2 < Ri < 0.30. 
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